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Abstract—For the purpose of medical education, our research
team is creating LINDSAY, a 3-dimensional, interactive computer
model of male and female anatomy and physiology. As part
of the LINDSAY—Virtual Human project, we have developed
a component-based computational framework that allows the
utilization of various formal representations, computation engines
and visualization technologies within a single simulation context.
For our agent-based simulations, the graphics, physics and
behaviours of our interacting entities are implemented through
a set of component engines. We have developed a light-weight
client/server component, which spreads its siblings in the system’s
component hierarchy over a wireless or wired network infras-
tructure. In this paper we demonstrate how our client/server
component paves new ways for organizing, generating, computing
and presenting educational contents.

I. INTRODUCTION

As health care systems all over the world struggle to provide
affordable and comprehensive care, the need for excellent
education and training of medical staff is more important
than ever. At the same time, emerging digital technologies
render it possible to present complex contents faster and
better to large audiences than ever before. In this context, we
are developing LINDSAY—Virtual Human, a project at the
intersection of Computer Science, Education, and Medicine.
LINDSAY provides a collection of computational tools for
research and learning in the context of human anatomy and
physiology.

As a starting point for this project, we experienced and
analyzed lectures in human anatomy given by distinguished
instructors. These investigations led to the conclusion that the
mere projection of a virtual three-dimensional human body
in combination with the ability to easily navigate and label
the display could greatly facilitate and improve the learning
experience. Consequently, such an application became the first
milestone of our LINDSAY project.

To this end, we devised a component-based framework
to make our content presentation platform extensible [1],
[2]. Hierarchies of components can combine attributes and
behaviours on different levels of scale and resolution. They
can host information for various visualization techniques (e.g.,
charts, animations), for interaction interfaces (associated with
hardware devices or software user-interfaces) or for simu-
lations computed in real-time and driven by heterogeneous
computational engines (physics engines, differential equation
solvers, etc.).

In this work, we present the design and implementation of
a networking component embedded into our content delivery
system. It enables a range of network topologies and config-
urations that can support novel means of active learning in
classrooms supported by wireless devices [3].

The remainder of this paper is structured as follows. Sec-
tion II introduces the emerging technology of virtual human
anatomies in learning environments. It also touches upon
agent-based and object-oriented simulation techniques as they
are our current focus for the presented networking technology.
We also provide references to previous networking solutions
for component-based architectures. Section III describes the
design and implementation of our client/server networking
component and its integration into the larger component frame-
work of our LINDSAY Virtual Human system. Section IV
describes examples of distributed computing and visualization
in the context of content generation and delivery in an edu-
cational environment. The article concludes with a summary
and exploration of opportunities for future work in Section V.

II. RELATED WORK

For more than two decades, scientists have been exploring
ways to enhance medical research and education by way of
computer-based renderings of human anatomy and physiology.
The American National Library of Medicine started as early
as 1989 with the composition of a comprehensive imagery
database of human physiology, also referred to as the Visible
Human [4]. Since then, these data sets have been inspiring a
large number of virtual anatomy projects for research, patient
consultation and education [5].

In the context of education, atlases have been composed that
promote the exploration of detailed anatomical terminology in
a proper visual context [6]. Some systems have been further
extended to incorporate data about actual biomedical processes
in the human body, for instance genetic processes [7]. Such
systems can be modelled and simulated by means of traditional
mathematical methodologies or as large sets of self-organizing
bio-agents, or swarm systems [8], [9].

Relying on a component-based architecture for a content
delivery and generation framework provides the freedom to
combine any of these computational modelling and simulation
approaches [2]. More specifically, a component can be broadly
defined as follows [1]:



Component A component’s characteristic properties
are that it is a unit of independent deployment; a unit
of third-party composition; and it has no persistent
state.

The design of component-based software architectures has ad-
vantages in regard to various application domains. Frameworks
for (human) collaborative work can be implemented by bro-
kering groupware components [10]. The coordinated execution
of heterogeneous components works for organizing human
collaboration as well as complex code bases that comprise
large sets of interoperable, reusable software components. For
example, a component-based augmented reality framework
could manage components for user interfaces, tracking or ob-
ject modelling [11]. Computer games, too, face the challenge
of integrating vast numbers of software components, whether
related to contents, providing networking infrastructure or user
interfaces [12]. A tutorial for constructing a component-based
framework in the context of Massively Multiplayer Online
games is provided in [13]. For practical reasons, multi-facetted
game units are defined by aggregating distinct software com-
ponents rather than by using established methodologies of
object-oriented inheritance [14], [15].

An overview of component-based client/server frameworks
is provided in [16]. Sets of component-based distributed
embedded systems facilitate coordinated interactions [17].
Redeployment of components across a network infrastructure
results in improvements regarding service availability [18]. Al-
ternatively, mobile devices can exchange software components
in peer-to-peer networks in order to address user requests [19].
The exchange of software components in heterogenous hard-
ware infrastructures might require adaptation of the control
over the respective components or of their data. In [20], such
an adaptation strategy is presented for transferring components
among devices of varying degrees of computational power,
e.g., from a desktop/server to a set of mobile devices. In
particular, adaptation is realized by specific drivers that serve
as middleware to translate the broadcast software components.

III. COMPONENT-BASED SIMULATION & NETWORKING

In our component-based simulation framework, the LIND-
SAY Composer, a simulation is represented as a hierarchy
of components. Figure 1 shows a prototypical component
hierarchy of a simulation. Darker shaded boxes represent
nested components at a lower level of the system hierarchy.
Components may be registered with and interface with various
computational engines. As an example, Figure 2 illustrates
how components on a higher hierarchical level, such as the
Blood Cell, can aggregate several subcomponents that are
registered with their respective component engines. Here, the
Blood Cell component has children registered with Graphics
and Physics component engines.

In particular, a component engine accesses a component’s
data, possibly relying on the presence of various sibling com-
ponents. State updates of the components drive the computa-
tional processes. As an example, a Physics component engine

updates the Transform component (position and orientation)
of the Blood Cell depicted in Figures 1 to 3 .

Although the aggregation of different components for indi-
vidual objects results in a flat functional hierarchy [14], [15],
a tree hierarchy facilitates object management in large simu-
lation environments. Parent-child relationships, as emphasized
in Figure 1, are primarily semantically motivated. They can,
however, also play a role in the context of certain modelling
representations such as Membrane Computing, where bio-
logical systems are described based on inner-compartmental
particle interactions and inter-compartmental particle transfers
[21]. In such a case, the component hierarchy in combination
with the means of object introspection can provide the data
structure required for a component engine that works across
hierarchies.

Simulation

Bl
oo

d 
C

el
l

C
am

er
a

Sc
en

e

Transform

Graphics

User 
Interaction

Transform

Mesh

Graphics

Physics

Fig. 1. Components at different hierarchical levels are defined by the
aggregation of their child components. Usually only the leaves of the tree
are registered with respective component engines.

A. Client/Server Components

We have embedded our Server and Client components into
the simulation’s component hierarchy. Thereby, we determine
which parts of the simulation should be broadcast over the
network, or where the received components should be em-
bedded in the recipient’s simulation context. Figures 2 and 3
show a Server and Client component within the hierarchies of
two prototypic simulation contexts—on a server and a client
system, respectively. In accordance with the shaded hierarchy
schema introduced in Figure 1, the Server component in Figure
2 is parented by a Scene component and is a sibling of a Blood
Vessel and a Blood Cell.

On the implementation side, our Client/Server component
architecture works as follows. The Server tries to connect with
a given Bonjour service name. Once a connection between
the Server and the Client component has been established, the
Server component first traverses and then broadcasts its sibling
components. Next, changes to the properties and hierarchical
organization of these siblings are aggregated over each frame
of the simulation, and are then packaged and distributed across
the network link. On the other side of this link, the Client
component first creates, then maintains and updates a mirrored



set of these components as it receives updates from the
server. These updates also consider structural changes to the
hierarchy, including creating, destroying, and rearranging the
mirrored components. In addition to the selection of subtrees,
a Server component can apply predicates to filter its siblings
and their children which results in an arbitrary selection of
transmitted and updated components. As an example, one
might only be interested in sending component types that
encapsulate spatial and visual information but do not process
the simulation. Another predicate might filter out a set of com-
ponents based upon their spatial position within a simulation.

The Client component, on the other hand, skips over the
recursive integration of those received components that would
require a component engine that is not provided by the client-
side system. In the example shown in Figure 3, a Client
component receives and maintains the Blood Vessel and the
Blood Cell components sent by the Server depicted in Figure
2. As the Server component has filtered out all Physics compo-
nents, the client system only processes the visualization of the
transferred components, relying on the Graphics component
engine and the Transform and Mesh component types.
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Fig. 2. A Server component is embedded within the scene of the simulation.
It transmits and updates its siblings, Blood Vessel and Blood Cell, across
the network. Grey boxes represent the component hierarchies. Circles denote
registered components. Component engines (coloured boxes) consider the
registered components in the order indicated by the dashed arrows. Parts of
the diagram were adapted from [15].

B. Technical Aspects

The implemented Client and Server components rely on
the Apple Bonjour protocol [22]. A service name is the
only information necessary to establish a handshake and a
connection link. Mac OS X Snow Leopard on Mac Pro desktop
machines with 2.26GHz eight-core Intel processors computed
and streamed the physics simulations. Multiple iPhone 3G
phones (16GB and 32GB) and iPod touches (3rd generation,
32 GB) were used as wireless devices. In our experiments,
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Fig. 3. A Client component integrates the components it receives as children.
In the given case, the Blood Vessel and Blood Cell are stripped off their
Physics component as it was filtered out by the streaming server in Fig. 2.

we measured about 800KB/s data throughput, rendering the
presented configurations more feasible to be deployed on
the IEEE wireless standards 802.1g and n, as opposed to
b. The Server component’s filtering method is implemented
based on the NSPredicate class of the Apple Foundation
framework [23]. Changes to components are observed via the
NSKeyValueObserving protocol.

IV. EXAMPLE SCENARIO

The introduced Client and Server components allow for
a broad variety of network configurations. In this section,
we present an example scenario for the classroom that uti-
lizes these components in different ways. Server and Client
components can exist on any device in a heterogeneous
network. Multiple Client and Server components may even
exist within the same component hierarchy on a single device.
This raises several interesting possibilities. For example, one
can have a centralized simulation running on a single powerful
machine, with less powerful devices connecting to this device
to only visualize (not compute) smaller portions of the sim-
ulation. Distributed simulation is also possible, with multiple
computers computing different pieces of the simulation. In
another example multiple handheld devices are connected to
a simulation that is run on a powerful shared device, where
each handheld controls different portions of that simulation.

We developed an example scenario around a physics-based
blood clotting simulation. Figure 4 shows a screenshot of
the simulation run by the LINDSAY Composer on a desktop
computer. One can see a clot forming over the breach in the
vessel wall.

A. Distributed Computation

In order to increase the scale of the simulation, the in-
troduced network components can be used to establish a
distributed computing network. Figure 5 presents a network
configuration in which different parts of a simulation are



Fig. 4. Screenshot of a blood clotting simulation run with the LINDSAY
Composer. Red blood cells are streaming through a blood vessel.

computed on different machines. In addition, one machine is
dedicated to retrieve and aggregate the information of the sep-
arately computed parts, which are then visualized in a single
simulation context. Figure 5(a) shows a conceptual diagram of
the network configuration: Three Client components load their
data into the same simulation context for visualization. The
screenshots in Figures 5(b-d) illustrate those three independent
simulations running on separate machines. Figure 5(e) shows
the resulting combined visualization in one simulation context.
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Fig. 5. (a) One computer receives data sent from three other machines and
integrates it into one simulation context. (b-d) Snapshots of the simulation
processes on the server machines. (e) The visualization of the merged
simulation data on the client machine.

B. Distributed Learning

Currently, a room for demonstration and development pur-
poses is setup for the LINDSAY project that is similar in size
to a medium-sized classroom (ca. 20 students). Simulations of

human anatomy are projected onto a large backlit projection
screen. This setup is designed so that one lecturer can teach
the students while guiding them through various simulation
contents. The Server/Client component tandem can, however,
add a new dimension of student involvement to the classroom
experience. In particular, students can connect with their
wireless handhelds, cell phones, laptops or tablets and explore
the shared simulation space by themselves. This means that
each student could take a different perspective of following the
shared simulation. For our example scenario, students could
observe the blood clotting from inside or outside the blood
vessel, hop onto a blood cell and follow the action, while the
rest of the class simply join the instructor’s perspective. Alter-
natively, wireless devices can be used as remote controls for
steering the actual scene presented on the screen—whether an
inquiring student or a guiding teacher controls the simulation
remotely would depend on the educational context and the
stage of the class.

Figure 6(a) illustrates the network configuration for such a
classroom setup. The projected simulation (top box) streams
simulation data to a number of wireless clients. Among them
is an iPod that is used as a remote control (middle box) whose
directions are fed back into the simulation. As complex physics
simulations are typically not suited for handheld devices, we
only send the visualization data of the simulation to the
iPhone/iPod clients (Figure 6(b)). In Figure 6(c), an on-screen
joystick is drawn on top of the visualization of the simulation.
It can be used to control the camera on the iPhone. In
particular, the virtual joystick can be used to move the camera
forward, backward, left and right. Additionally, the camera can
be rotated by touching on the screen and dragging the fingers
in the desired direction—up/down pitches the camera, whereas
left/right rotates the camera around its y-axis.

Since the camera and its transformation is transferred to
the workstation, any change to the camera on the iPhone will
change the camera on the workstation. Hence, the camera
of the main simulation running on the workstation can be
controlled using an iPhone, which would typically be used
by the course instructor.

V. SUMMARY & FUTURE WORK

We introduced the LINDSAY Composer as a generic,
component-based simulation platform. Its primary purpose is
the simulation and visualization of complex biomedical sys-
tems for teaching in medical education. We present Client and
Server components that can be embedded in the hierarchical
data structure of simulation within the LINDSAY Composer.
These networking components can be easily used to send and
receive parts of a simulation over a network. Since multiple
Server and Client components can be integrated into one
system, and since they are able to handle arbitrary component
data, complex networking scenarios are possible.

With several examples, we have demonstrated the flexi-
bility and simplicity of using Server/Client components to
implement interesting networking scenarios. These scenarios
are designed for, but not limited to a classroom context. In
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Fig. 6. (a) A network configuration for an interactive classroom: A shared
simulation is presented on individual wireless devices. Information from one
of these devices is fed back into the simulation. (b) Visualization of the
simulation on an iPhone—as described in Section III-A, Physics components
are not transferred. (c) On a second iPhone, a virtual joystick (in the bottom
right corner) is used to guide the camera.

particular, we showed how a complex physics-based simu-
lation can be computed on several machines and how the
results can be visualized by one client. Filtering out Physics
components from the transmitted simulation data renders it
possible to have complex simulations visualized on wireless
devices with limited computational power. In particular, we
stream visualization data from a blood clotting simulation to
a set of iPhones/iPods that are used by students to individually
explore a shared simulation. By adding a Server component
to a wireless device, it can be used as a remote control and
feed data back into another system. In an example, we used
an iPhone to direct the camera of a remote simulation.

The combination of a component-based simulation frame-
work and easy-to-use networking components allows for a vast
number of possible networking scenarios. In addition to the
presented examples, students could use networked devices to
simultaneously manipulate the data of a shared simulation. In
this context, the idea of turning iPhones into augmented reality
devices might prove invaluable: depending on the environment
captured by an iPhone’s camera, additional information dis-
played on the handheld devices could overlay the projected
simulation. Mixed-reality elements could be introduced, for
instance, using the overlay technique to display simulation data
in the context of a human body.

In addition to exploring new technological prototypes for
interactive classroom settings, an easy-to-use graphical user
interface will have to be provided so that lecturers can
quickly design and setup distributed simulation scenarios. The
Client/Server components should be extended by an authenti-
cation mechanism. This could help to maintain confidentiality
about certain course material, which is required, for instance,
in the context of human corpses. Authentication would also
empower the instructor to individualize the learning experience
of the students, e.g., by assigning different means to manipu-

late simulation data, or by giving access to different supple-
mentary data sets. Associating specialized configurations with
handheld devices could also support group work.
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